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An analytical method is proposed to predict the temperature distribution and local Nusselt number for
laminar flow in a double-pass countercurrent heat exchanger with sinusoidal heat flux distribution. A
design of inserting in parallel an impermeable barrier to divide an open conduit into two subchannels
for conducting double-pass operations, resulting in substantially improved the heat transfer rate, has
been evaluated theoretically in the fully developed region. Comparison with the theoretical results shows
that the heat-transfer efficiency improvement for double-pass concentric circular heat exchangers is gen-
erally higher than those in the single-pass operations without an impermeable barrier inserted. The influ-
ences of the impermeable-barrier location on the heat-transfer efficiency improvement and power
consumption increment, as indicated from theoretical predictions, can be used to determine the econom-
ical feasibility in operating double-pass devices.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The studies on the heat-transfer phenomena of fluid flow in a
bounded conduit are essential to the improved design of heat
transfer equipment. The theoretical model coupled with the ana-
lytical solution or numerical results are useful to obtain the con-
vective heat-transfer coefficients estimation and temperature
distribution under different physical conditions. The well-known
Graetz problems [1–3] study the heat transfer system with laminar
flow of the negligible axial conduction in cylindrical or parallel-
plate geometries. For low Prandtl number fluids, such as liquid
metal, the effects of axial conduction cannot be ignored in analysis
of heat-transfer phenomenon and such problems are so-called
extended Graetz problems [4–6]. Moreover, the laminar convective
heat transfer of multi-stream or multiphase systems are called
conjugated Graetz problems [7–9].

Much effort has been devoted to investigate the different kinds
of boundary conditions which can be prescribed at the conduit
wall. Most of the interest on the heat transfer in engineering appli-
cations is the two cases of the uniform wall temperature (Dirichlet
problem) [10,11] and uniform heat flux (Neumann problem)
[12–14]. However, the convective heat-transfer problems with
non-uniform heating are also investigated by many researchers,
such as asymmetric heating [15,16], periodic heating [17,18] and
circumferentially heating [19,20]. The condition of periodic heating
is usually occurs in pre-heating systems and experimental setups
ll rights reserved.
with employing the equally spacing heating strips. The simplest
model of period heating is the sinusoidal wall heat flux [21,22]
or sinusoidal temperature distribution [23]. The well-known case
of sinusoidal wall heat flux distribution on the wall is in the
designing of the cooling tubes in nuclear reactors.

In the present study, an impermeable barrier was inserted to
divide an open conduit into two subchannels for conducting dou-
ble-pass operations to improve the heat transfer rate of the tube
heat exchangers with sinusoidal wall fluxes. The purposes of this
study are (1) to develop a theoretical mathematical model of dou-
ble-pass laminar counterflow concentric-tube heat exchangers
with sinusoidal wall fluxes; (2) to solve analytically the wall tem-
perature distribution in flow direction; (3) to discuss the effects of
Graetz number and impermeable-barrier location on the Nusselt
number and heat-transfer efficiency improvement.
2. Temperature distributions

A double-pass concentric-tube heat exchanger was made by
inserting an impermeable barrier into a circular tube of inside
diameter 2R and length L, as shown in Fig. 1. The thickness of
the inner (subchannel a) and annular tube (subchannel b) are 2
jR and 2(1 � j)R, respectively. Comparing to the radius of circu-
lar tube R, the thickness of the impermeable barrier d is negligible
(d� R). Two flow patterns, say flow pattern A and flow pattern B,
are proposed in this study. The flow pattern A is that the fluid
with volumetric flow rate V and temperature TI firstly feeds into
subchannel a and then flows reversely into the subchannel b with
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Nomenclature

an coefficient in Eq. (40)
bn coefficient in Eq. (41)
B constant, defined in Eq. (13)
De equivalent diameter of the conduit, m
f friction factor
Gz Graetz Number, 4V/apL
h heat-transfer coefficient kW/m2 K
Ih heat transfer improvement based on single-pass

devices, defined by Eq. (66)
Ip power consumption increment, defined by Eq. (68)
k heat conductivity coefficient of the wall, kW/m K
L conduit length, m
‘wf friction loss in conduit, N m/kg
Nu(n) local Nusselt number, defined by Eq. (59)
Nu average Nusselt number, defined by Eq. (64)
P power consumption, N m/s
q00 heat flux on the wall, J/m2 s
R radius of outer tube, m
r radial coordinate, m
R1 radius of inner tube, m
Re Reynolds number
T temperature, K
u velocity distribution of fluid, m/s
�u average velocity of fluid, m/s
V input volume flow rate of conduit, m3/s
W1 constant, defined in Eq. (7)

W2 constant, defined in Eq. (8)
z longitudinal coordinate, m

Greek symbols
a thermal diffusivity of fluid, m2/s
b constant
d impermeable barrier thickness, m
/ dimensionless temperature, kðT � T iÞ=q000R
c1a, c2a integration constants in Eq. (53)
c1b, c2b integration constants in Eq. (54)
g radial coordinate, r/R
j impermeable-barrier location, defined in Eq. (13)
k constant
h0a constant in Eq. (14)
h0b constant in Eq. (15)
h1a, h2a, h3a functions of g, defined in Eq. (14)
h1b, h2b, h3b functions of g, defined in Eq. (15)
n longitudinal coordinate, z/(LGz)

Subscripts
a subchannel a
b subchannel b
F at the outlet
i at the inlet
0 in a single-pass device without recycle
w at the wall surface
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the aid of a convectional pump at the end of the conduit as
shown in Fig. 1(a). In other hand, the flow pattern B is that the
fluid firstly feeds into subchannel b and exits from the subchan-
nel a as shown in Fig. 1(b). In both flow patterns, the fluid is
heated by the outer wall with sinusoidal heat fluxes,
q00wðzÞ ¼ q000½1þ sinðbzÞ�.

The following assumptions are made to simplify the theoretical
analysis: constant physical properties of fluid; fully-developed
laminar flow in the entire length in the inner and annular subchan-
nels; neglecting the entrance length and the end effects; ignoring
the longitudinal heat conduction and the thermal resistance of
the impermeable barrier.

The energy balance equations of a double-pass heat exchanger
with sinusoidal heat fluxes were formulated as

uaðgÞR2

GzLa
o/aðg; nÞ

on
¼ 1

g
o

og
g

o/aðg; nÞ
og

� �
ð1Þ

ubðgÞR2

GzLa
o/bðg; nÞ

on
¼ 1

g
o

og
g

o/bðg; nÞ
og

� �
ð2Þ

where ua and ub are the velocity distributions in subchannels a and
b, respectively, which are derived in Appendix A, and they are

uaðgÞ ¼
2V

pðjRÞ2
1� g

j

� �2
� �

0 6 ga 6 j ð3Þ

ub gð Þ ¼ � 2V

½pR2 � pðjRÞ2�W1

1� ðgÞ2 þW2 ln g
h i

j 6 gb 6 1 ð4Þ

in flow pattern A and

uaðgÞ ¼
�2V

pðjRÞ2
1� g

j

� �2
� �

0 6 ga 6 j ð5Þ

ubðgÞ ¼
2V

pR2 � pðjRÞ2
h i

W1

½1� ðgÞ2 þW2 ln g� j 6 gb 6 1 ð6Þ

in flow pattern B, respectively, where W1 and W2 are
W1 ¼
1� j4

1� j2 �
1� j2

ln 1
j

" #
ð7Þ

and

W2 ¼
1� j2

ln 1=j

� �
ð8Þ

The corresponding boundary conditions are

o/að0; nÞ
og

¼ 0 ð9Þ

o/bð1; nÞ
og

¼ 1þ sinðBnÞ ð10Þ

o/aðj; nÞ
og

¼ o/bðj; nÞ
og

ð11Þ

/aðj; nÞ ¼ /bðj; nÞ ð12Þ

The dimensionless groups in Eqs. (1)–(12) are

g ¼ r
R
; n ¼ z

GzL
; /a ¼

kðTa � T iÞ
q000R

; /b ¼
kðTb � T iÞ

q000R
;

Gz ¼ 4V
apL

; j ¼ R1

R
; B ¼ bGzL ð13Þ

The dimensionless temperature distribution of the laminar
double-pass counterflow concentric-tube heat exchangers with
sinusoidal wall fluxes can be expressed as follows: [14,22]

/aðg; nÞ ¼ h0anþ h1aðgÞ þ h2aðgÞ sinðBnÞ
þ h 3aðgÞ cosðBnÞ ð14Þ

/bðg; nÞ ¼ h0b
1

Gz
� n

� �
þ h1bðgÞ þ h2bðgÞ sinðBnÞ

þ h3bðgÞ cosðBnÞ ð15Þ

in which the h0a and h0b are the undetermined constants, and the
h1a, h2a, h3a, h1b, h2b and h3b are the functions of g to be deter-
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Fig. 1. Double-pass concentric-tube heat exchangers with sinusoidal wall fluxes.
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mined. Substituting Eqs. (14) and (15) into the governing equa-
tions, Eqs. (1) and (2), and the boundary conditions, Eqs. (9)–
(12), yields

d
dg

g
dh1aðgÞ

dg

� �
�uaðgÞR2g

GzLa
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d
dg

g
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dg
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" #
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g
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� �
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" #
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d
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g
dh2bðgÞ
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g
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�ubðgÞBR2g

GzLa
h2bðgÞ

" #
cosðBnÞ¼0 ð17Þ

dh1að0Þ
dg

þ dh2að0Þ
dg

sinðBnÞ þ dh3að0Þ
dg

cosðBnÞ ¼ 0 ð18Þ
dh1 bð1Þ
dg

� 1
� �

þ dh2 bð1Þ
dg

� 1
� �

sinðBnÞ þ dh3bð1Þ
dg

� �
cosðBnÞ ¼ 0

ð19Þ

dh1aðjÞ
dg

� dh1bðjÞ
dg

� �
þ dh2aðjÞ

dg
� dh2bðjÞ

dg

� �
sinðBnÞ

þ dh3aðjÞ
dg

� dh3bðjÞ
dg

� �
cosðBnÞ ¼ 0 ð20Þ

h0anþ h1aðjÞ þ h2aðjÞ sinðBnÞ þ h3aðjÞ cosðBnÞ

¼ h0b
1

Gz
� n

� �
þ h1bðjÞ þ h2bðjÞ sinðBnÞ þ h3bðjÞ cosðBnÞ ð21Þ
2.1. Solving h2a(g), h3a(g), h2b(g) and h3b(g) by Frobenius method

Multiplying Eqs. (16)–(21) by sin(Bn) and integrating with
respect to n in the interval [0,2p/B], one can obtain
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d
dg
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dh2aðgÞ
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þ uaðgÞBR2g
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dg

g
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h3bðgÞ ¼ 0 ð23Þ
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dg
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dh2bð1Þ
dg

¼ 1 ð25Þ

dh2aðjÞ
dg

¼ dh2bðjÞ
dg

ð26Þ

h2aðjÞ ¼ h2bðjÞ ð27Þ

Similarly, multiplying Eqs. (16)–(21) by cos(Bn) and integrating
with respect to n in the interval [0,2p/B], one can obtain

d
dg

g
dh3aðgÞ

dg

� �
� uaðgÞBR2g

GzLa
h2aðgÞ ¼ 0 ð28Þ

d
dg

g
dh3bðgÞ

dg

� �
� ubðgÞBR2g

GzLa
h2bðgÞ ¼ 0 ð29Þ

dh3að0Þ
dg

¼ 0 ð30Þ

dh3bð1Þ
dg

¼ 0 ð31Þ

dh3aðjÞ
dg

¼ dh3bðjÞ
dg

ð32Þ

h3aðjÞ ¼ h3bðjÞ ð33Þ

According to the mathematical treatment in the previous work
[22], the complex functions wa(g) = h2a(g) + h3a(g)i and
wb(g) = h2b(g) + h3b(g)i were introduced to combine Eqs. (22)–
(27) and Eqs. (28)–(33) into a unique one-dimensional boundary
value problem as follows:

d
dg

g
owaðgÞ

og

� �
� uaðgÞBR2g

GzLa
waðgÞi ¼ 0 ð34Þ

d
dg

g
owbðgÞ

og

� �
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GzLa
wbðgÞi ¼ 0 ð35Þ

dwað0Þ
dg

¼ 0 ð36Þ

dwbð1Þ
dg

¼ 1 ð37Þ

dwaðjÞ
dg

¼ dwbðjÞ
dg

ð38Þ

waðjÞ ¼ wbðjÞ ð39Þ

By applying the Frobenius method, the wa(g) and wb(g) can be
expressed as

waðgÞ ¼
X1
n¼0

angnþka ; n P 0 ð40Þ

wbðgÞ ¼
X1
n¼0

bngnþkb ; n P 0 ð41Þ

As provided in Appendix B, one can find the constants of ka and
kb are zero. For the flow pattern A, the coefficients an and bn are
determined by following recursive relations

a0; a2n ¼
Bi

8j2

1
n2 a2n�2 �

1
j2 a2n�4

� �
; n P 1 ð42Þ

and
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2
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�

� 1þ 1
2
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bn�4

�
; n P 2; ð43Þ
respectively. Moreover, for the flow pattern B, the recursive rela-
tions of the coefficients an and bn are

a0; a2n ¼
�Bi
8j2

1
n2 a2n�2 �

1
j2 a2n�4

� �
; n P 1 ð44Þ

and
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2
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� �
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�
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2
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� �
bn�4

�
; n P 2 ð45Þ

The undetermined coefficients a0 and b0 in Eqs. (42)–(45) can be
solved by the boundary conditions. Hence, the expressions of
h2a(g), h3a(g), h2b(g) and h3b(g) were obtained by substituting Eqs.
(42) and (43) (flow pattern A) and Eqs. (44) and (45) (flow pattern
B) into Eqs. (40) and (41), respectively.

2.2. Solving h0a, h1a(g), h0b and h1b(g)

The functions of h1a(g) and h1b(g) and constants h0a and h0b can
be solved by following procedure. Firstly, by integrating Eqs. (16)–
(21) with respect to n in the interval [0,2p/B], one can obtain

d
dg

g
dh1aðgÞ

dg

� �
� uaðgÞR2g

GzLa
h0a ¼ 0 ð46Þ

d
dg

g
dh1bðgÞ

dg

� �
þ ubðgÞR2g

GzLa
h0b ¼ 0 ð47Þ

dh1að0Þ
dg

¼ 0 ð48Þ

dh1bð1Þ
dg

¼ 1 ð49Þ

dh1aðjÞ
dg

¼ dh1bðjÞ
dg

ð50Þ

h0a ¼ �h0b ð51Þ

h1aðjÞ ¼
h0b

Gz
þ h1 bðjÞ ð52Þ

Then, integrating Eqs. (46) and (47) twice with respect to g for
h1a(g) and h1b(g) yields

h1a ¼
h0 a

2j2

1
4
g2 � g4

16j2 þ c1a ln gþ c2 a

� �
ð53Þ

and

h1b ¼
h0b

2W1ð1� j2Þ
1
4
g2 � 1

16
g4 þW2

4
g2½lng� 1� þ c1b ln gþ c2b

� �
ð54Þ

respectively, where c1a, c2a, c1b and c2b are the integrating con-
stants. The two undetermined constants h0a and h0b, and the four
integrating constants c1a, c2a, c1b and c2b were calculated by the
boundary conditions, Eqs. (48)–(52), and the overall energy
balance

qCpVðTF � T iÞ ¼
Z L

0
q00ðzÞ2pRdz ð55Þ

or rewritten as

/F ¼
Z 1

Gz

0
8½1þ sinðBnÞ�dn ¼ 8

1
Gz
� 1

B
cos

B
Gz

� �
� 1

� �� �
ð56Þ

where the /F is the average outlet temperature and it is defined as

/F ¼ �
1
V

Z 1

j
ub2pR2g/bðg;0Þdg ð57Þ

in flow pattern A, and



Table 2
Convergence of power series in Eqs. (40) and (41) for n = 70 and 75 with j = 0.5 (flow
pattern B)

Gz n h2a (0.3) h3a (0.3) h2b (0.7) h3b (0.7) Nu

Table 1
Convergence of power series in Eqs. (40) and (41) for n = 70 and 75 with j = 0.5 (flow
pattern A)

Gz n h2a (0.3) h3a (0.3) h2b (0.7) h3b (0.7) Nu

1 70 �0.118 0.242 0.148 �1.524 0.09
75 �0.118 0.242 0.148 �1.524 0.09

10 70 3.7 � 10�5 9.1 � 10�6 �5.0 � 10�4 3.8 � 10�4 2.34
75 4.0 � 10�5 �2.6 � 10�6 �7.8 � 10�4 7.9 � 10�4 2.34

50 70 6.4 � 10�21 1.5 � 10�21 1.6 � 10�13 �7.6 � 10�15 6.62
75 6.3 � 10�21 �3.1 � 10�21 2.6 � 10�14 �1.1 � 10�15 6.62

100 70 �2.2 � 10�24 1.0 � 10�24 1.7 � 10�13 �8.1 � 10�15 8.04
75 �6.8 � 10�26 3.3 � 10�26 2.6 � 10�14 �1.2 � 10�15 8.04

200 70 �7.3 � 10�26 1.4 � 10�25 1.7 � 10�13 �8.5 � 10�15 8.99
75 �7.8 � 10�27 2.4 � 10�26 2.7 � 10�14 �1.3 � 10�15 8.99
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/F ¼ �
1
V

Z j

0
ua2pR2g/aðg;0Þdg ð58Þ

in flow pattern B, respectively. Therefore, the complete solutions of
the temperature distribution in a double-pass concentric-tube heat
exchanger were obtained by substituting the functions of h0a, h0b,
h1a, h1b, h2a, h2b, h3a and h3b into the /a and /b, that is, Eqs. (14)
and (15).

3. Heat-transfer efficiency improvement

The local Nusselt number of double-pass concentric-tube heat
exchangers was defined as

NuðnÞ ¼ hDe

k
ð59Þ

where k is the heat conductivity coefficient of the wall, De is the
equivalent diameter of the conduit, De = 2R, and h is the
heat-transfer coefficient. The heat-transfer coefficient h was
defined as

q00wðzÞ ¼ hðTwðR; zÞ � T iÞ ð60Þ

or, in the dimensionless form,

h ¼ k
R

q00wðnÞ
q000/wð1; nÞ

¼ k
R

1þ sinðBnÞ
/wð1; nÞ

ð61Þ

Substituting Eq. (61) into Eq. (59) yields

NuðnÞ ¼ 2 1þ sinðBnÞ½ �
/wð1; nÞ

ð62Þ

Similarly, the local Nusselt number of single-pass tube heat
exchangers was defined as

Nu0ðnÞ ¼
2½1þ sinðBnÞ�

/w0ð1; nÞ
ð63Þ

where the wall temperature distribution, /w0(1,n), of single-pass
tube heat exchangers can be determined according to the reference
[22].

Moreover, the average Nusselt numbers of single- and double-
pass concentric-tube heat exchangers were determined by

Nu ¼ Gz
Z 1=Gz

0
NuðnÞdn ¼ Gz

Z 1=Gz

0

2½1þ sinðBnÞ�
/wð1; nÞ

dn ð64Þ

and

Nu0 ¼ Gz
Z 1=Gz

0
Nu0ðnÞdn ¼ Gz

Z 1=Gz

0

2½1þ sinðBnÞ�
/ w0ð1; nÞ

dn ð65Þ

respectively. The heat-transfer efficiency improvement by employ-
ing a double-pass operation was defined as the percent increase in
heat transfer based on that in a single-pass device with the same
working dimensions and operating parameters

Ih ¼
Nu� Nu0

Nu0
ð%Þ ð66Þ
1 70 �0.118 0.242 0.148 �1.524 0.36
75 �0.118 0.242 0.148 �1.524 0.36

10 70 3.7 � 10�5 9.1 � 10�6 �5.0 � 10�4 3.8 � 10�4 4.39
75 4.0 � 10�5 �2.6 � 10�6 �7.8 � 10�4 7.9 � 10�4 4.39

50 70 6.4 � 10�21 1.5 � 10�21 1.6 � 10�13 �7.6 � 10�15 8.09
75 6.3 � 10�21 �3.1 � 10�21 2.6 � 10�14 �1.1 � 10�15 8.09

100 70 �2.2 � 10�24 1.0 � 10�24 1.7 � 10�13 �8.1 � 10�15 9.00
75 �6.8 � 10�26 3.3 � 10�26 2.6 � 10�14 �1.2 � 10�15 9.00

200 70 �7.3 � 10�26 1.4 � 10�25 1.7 � 10�13 �8.5 � 10�15 9.56
75 �7.8 � 10�27 2.4 � 10�26 2.7 � 10�14 �1.3 � 10�15 9.56
4. Power consumption increment

The power consumption increases while an impermeable bar-
rier is inserted into a single-pass device to conduct the double-pass
operation. For simplicity to make a comparison, only the wall fric-
tion loss is considered in the calculation of the power consumption
increment in double-pass devices. The friction losses caused by a
joint, a diversion or a bending of a tube were neglected in this
study. The wall friction loss can be estimated by

‘wf ¼ 2f �v2L=De ð67Þ
in which �v is the average velocity of fluid in the conduits. The fric-
tion factor f is determined by f=16/Re for the laminar flow in the
circular conduits. The power consumption is determined by
P = Vq‘wf. Accordingly, the power consumption increment, Ip, of a
double-pass device can be estimated based on the power consump-
tion in a single-pass device as follows:

Ip ¼
P � P0

P0
¼

Vq ‘wf ;a þ ‘wf ;b
� 	

� Vq‘wf ;0

Vq‘wf ;0

¼ 1
j4 þ

1

ð1� j2Þð1� jÞ2
� 1 ð68Þ
5. Results and discussion

The dimensionless temperature distributions of the laminar
double-pass counterflow concentric-tube heat exchangers with
sinusoidal wall fluxes were obtained by solving the energy balance
equations with the aid of the linear superposition of Eqs. (14) and
(15). The convergences of power series of Frobenius method in Eqs.
(40) and (41) for flow patterns A and B are shown in Tables 1 and 2,
respectively. The calculated results shown that the two finite series
of n = 70 and 75 agree reasonably well for the power series because
of the resulting average Nusselt numbers are the same for the cases
of j = 0.5 in flow patterns A and B, as indicated from Tables 1 and 2.
Moreover, the convergence of Taylor series of lng for N = 2 and 3
with j = 0.5 in both flow patterns A and B are shown in Table 3
and the results indicate that the truncation after N = 2 of Taylor
series for approximation of lng is good enough. Therefore, the
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terms of n = 70 and N = 2 were employed in the calculation proce-
dure for the power series of Frobenius method and Taylor series,
respectively, in this study.

5.1. Temperature distribution and Nusselt numbers in double-pass
devices

For an engineer, to estimate the wall temperature of a heat
exchanger for choosing the adequate heat exchanger materials is
very important. Unfortunately, it is usually difficult to know the
wall temperature of a heat exchanger with uniform or sinusoidal
wall fluxes in prior. However, the dimensionless wall temperatures
of the present design of double-pass heat exchangers with sinusoi-
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Fig. 3. Dimensionless wall temperature vs. Gzn with j as
dal wall fluxes were obtained theoretically by solving the mathe-
matical model analytically. The calculated results are illustrated
in Figs. 2 and 3 for flow patterns A and B, respectively. Observing
from Figs. 2 and 3, one can find that the wall temperature increases
along the working fluid flowing direction due to the sinusoidal wall
fluxes. Moreover, the working fluid has the longer residence time
in conduit for lower Gz, i.e. lower volumetric flow rate or longer
conduit length, resulting in the higher outlet temperature as con-
firmed by Eqs. (57) and (58). Hence, the profile of wall temperature
varies more drastically and is higher in lower Graetz number than
that in higher Graetz number. The influences of the impermeable-
barrier location j on the wall temperature are also shown in Figs. 2
and 3. The larger value of j refers to the impermeable-barrier
   Single-pass devices
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Table 3
Convergence of Taylor series of lng for N = 2 and 3 with j = 0.5

Gz N Flow pattern A Flow pattern B

h2b (0.7) h3b (0.7) Nu h2b (0.7) h3b (0.7) Nu

1 2 0.148 �1.524 0.09 0.148 �1.524 0.36
3 �0.012 �0.001 0.09 �0.012 �0.001 0.36

10 2 �5.0 � 10�4 3.8 � 10�4 2.34 �5.0 � 10�4 3.8 � 10�4 4.39
3 �5.5 � 10�6 3.7 � 10�5 2.34 �5.5 � 10�6 3.7 � 10�5 4.39

50 2 1.6 � 10�13 �7.6 � 10�15 6.62 1.6 � 10�13 �7.6 � 10�15 8.09
3 1.0 � 10�13 �1.0 � 10�13 6.62 1.0 � 10�13 �1.0 � 10�13 8.09

100 2 1.7 � 10�13 �8.1 � 10�15 8.04 1.7 � 10�13 �8.1 � 10�15 9.00
3 1.5 � 10�13 �1.2 � 10�13 8.04 1.5 � 10�13 �1.2 � 10�13 9.00

200 2 1.7 � 10�13 �8.5 � 10�15 8.99 1.7 � 10�13 �8.5 � 10�15 9.56
3 2.0 � 10�13 �1.0 � 10�13 8.99 2.0 � 10�13 �1.0 � 10�13 9.56
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locate more near the outer tube, and hence, the average velocity in
annulus tube �vb increases with j. Moreover, due to the heat-trans-
fer coefficient of working fluid is directly proportional to the fluid
velocity, one can expect that the amount of heat removed from the
wall increases with increasing j. In other words, the wall temper-
ature decreases with increasingj, as confirmed by Figs. 2 and 3.

The Nusselt number represents the dimensionless quantity of
heat-transfer coefficient and provides a measure of convection
heat transfer occurring at the wall surface. The local Nusselt num-
bers of the double- and single-pass concentric-tube heat exchang-
ers are determined by Eqs. (62) and (63), respectively. Figs. 4 and 5
show the local Nusselt number distributions of Flow patterns A
and B, respectively, with j as a parameter for Gz = 10, 50 and
100. Similar to the distribution of wall temperature, the distribu-
tion of local Nusselt numbers for a heat exchanger with sinusoidal
wall fluxes is a sinusoidal curve as shown in Figs. 4 and 5. The local
Nusselt numbers are inversely proportion to the wall temperature,
as defined in Eqs. (62) and (63). Therefore, the local Nusselt num-
bers increase with the Graetz numbers and the impermeable-bar-
rier location j as illustrated in Figs. 4 and 5. The average Nusselt
numbers of double- and single-pass are determined by Eqs. (64)
25
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Fig. 4. The local Nusselt number vs. Gzn with j as a p
and (65) and the results are shown in Figs. 6 and 7 for flow patterns
A and B, respectively. The average Nusselt numbers increase with
increasing Graetz numbers and the impermeable-barrier location
j, as shown in Figs. 4 and 5. Moreover, as referred to Eqs. (64)
and (65), the Nu is inversely proportional to the average wall tem-
perature, hence, the larger Nu also implies that the lower average
wall temperature was obtained. The influence of constant B on
the average Nusselt number in flow patterns A and B is shown in
Table 4. The results indicate that the average Nusselt number is
an increasing function of constant B in both flow patterns.

5.2. Heat-transfer efficiency improvement and power consumption
increment

The heat-transfer efficiency improvement Ih by employing a
double-pass operation is defined by Eq. (66). Some calculated re-
sults of Ih with j as a parameter for flow pattern A and B are shown
in Tables 5 and 6, respectively. The positive signs in Tables 5 and 6
refer that the heat-transfer efficiency of a double-pass device is
higher than that of a single-pass device under the same operating
conditions. Observing from Tables 5 and 6, one can find that the
le-pass devices
.3
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arameter for Gz = 10, 50 and 100; flow pattern A.
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heat-transfer efficiency improvement increases with increasing
Graetz numberGz and impermeable-barrier location j. Moreover,
Tables 4 and 5 also show the two results: (1) by employing flow
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Fig. 6. The average Nusselt number vs. Gz with j as a parameter; flow pattern A.
pattern A, the positive heat-transfer efficiency improvement is
obtained for Gz > 10 and j > 0.5; (2) by employing flow pattern B,
the positive heat-transfer efficiency improvement is obtained for
Gz > 10.
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Fig. 7. The average Nusselt number vs. Gz with j as a parameter; flow pattern B.



Table 4
Average Nusselt numbers with B as a parameter for Gz = 100

Nu j = 0.3 j = 0.5 j = 0.7

Flow pattern A
B = 50 6.85 8.67 12.42
B = 100 6.98 9.78 14.25
B = 200 7.78 10.13 14.56

Flow pattern B
B = 50 5.45 11.07 15.09
B = 100 8.68 12.30 18.14
B = 200 9.45 13.31 20.50

Table 5
The heat-transfer efficiency improvement with j as a parameter (flow pattern A)

Ih (%) j

0.3 0.4 0.5 0.6 0.7

Gz = 1 �82.64 �84.30 �86.70 �85.80 �84.49
10 �16.34 �16.24 7.82 9.61 11.73

100 59.48 81.24 109.61 148.43 205.04
200 67.01 92.06 125.58 173.02 245.59

Table 6
The heat-transfer efficiency improvement with j as a parameter (flow pattern B)

Ih (%) j

0.3 0.4 0.5 0.6 0.7

Gz = 1 �39.85 �45.47 �46.28 �63.57 �71.01
10 32.80 42.26 102.63 118.43 139.19

100 74.07 100.11 134.78 183.56 257.52
200 74.93 102.49 139.78 193.42 277.31
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Fig. 8. The Ih/Ip vs. Gz with j as a parameter; flow patterns A and B.
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For an economic sense, the power consumption increment
cased by inserting an impermeable barrier into a single-pass device
to conduct the double-pass operation is also discussed in this
study. The power consumption increment Ip of a double-pass
device is determined based on the power consumption in a
single-pass device, as shown in Eq. (68). The power consumption
increases with flow rate, tube diameter and fluid viscosity. There-
fore, in an economic sense, the present double-pass device is suit-
able to the low viscosity fluid system under lower flow-rate
operations. For example, under following working dimen-
sions:L = 1.2 m, R = 0.07 m, V = 1 � 10�4 m3/s, l = 8.94 � 10�4 kg/
m s and q = 997.08 kg/m3, the corresponding power consumption
of a single-pass device is P0 = Vq‘wf,0 = 1.44 � 10�6 J/s and Table 7
shows the calculating results of Ip. As indicated from Table 7, the
Ip increases as j moves away from 0.5. However, although the
maximum power consumption increment is 10,000 for j = 0.1,
the corresponding power consumption P = 1.44 � 10�2 J/s is still
small and it is reasonable to ignore the power consumption for
all operation conditions. A comparison is made for the heat-trans-
fer efficiency enhancement Ih and the power consumption incre-
ment Ip in the form of Ih/Ip. As shown in Fig. 8, for both flow
patterns A and B, the values of Ih/Ip are positive as Gz > 25 and in-
crease with increasing Graetz numberGz and impermeable-barrier
location j. Furthermore, comparing to both flow patterns by exam-
ining Ih/Ip, one can find that the flow pattern B always performs
better than that in flow pattern A.
Table 7
The power consumption increment with j as a parameter

IP

j = 0.1 j = 0.3 j = 0.5 j = 0.7 j = 0.9
10,000 124 20 24 526
6. Conclusions

The theoretical mathematic model of the double-pass laminar
counterflow concentric-tube heat exchangers with sinusoidal wall
fluxes has been developed in this study. The heat-transfer phenom-
ena of two flow patterns A and B are investigated theoretically in
this study and it can be categorized to the conjugated Graetz prob-
lems. The analytical solutions are obtained by setting a general
solution form for the laminar double-pass counterflow concen-
tric-tube heat exchangers with sinusoidal wall fluxes [14,22] to
separate the original boundary value problem into a partial differ-
ential equation, which can be solved by Frobenius method, and an
ordinary differential equation. The influences of Graetz number Gz
and impermeable-barrier location j on the wall temperature dis-
tribution, local Nusselt number, average Nusselt number and
heat-transfer efficiency improvement in a double-pass heat
exchanger are also discussed in this study. The theoretical results
indicate that the heat-transfer efficiency increases with increasing
Gz and j. In an economic sense, the best selection of operating con-
ditions by considering both the heat-transfer efficiency enhance-
ment and power consumption increment, i.e. Ih/Ip, are Gz = 200
and j = 0.7, as shown in Fig. 8. Comparing to both flow patterns
A and B, the flow pattern B achieves a good device performance
than that in flow pattern A.
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Appendix A

By assuming the fully-developed laminar flow in each channel,
steady-state and constant fluid physical properties, the momen-
tum balance can be obtained by Navier–Stokes equation as
follows:

�l
r

d
dr

r
du i

dr

� �
¼ �dpi

dz
ði ¼ a; bÞ ðA1Þ

The boundary conditions in subchannel a of flow pattern A are

duað0Þ
dr

¼ 0 and uaðjRÞ ¼ 0 ðA2Þ

By integrating Eq. (A1) twice with respect to r and using the bound-
ary condition Eq. (A2), one can get the velocity profile in subchannel
a for flow pattern A

uaðrÞ ¼
ðjRÞ2

4l
� op

oz

� �
1� r

jR

� �2
� �

ðA3Þ

Moreover, the corresponding average velocity is determined by

�ua ¼
R 2p

0

R j1R
0 uardrdhR 2p

0

R j1R
0 rdrdh

¼ ðjRÞ2

8l
� oP

oz

� �
¼ V

pðjRÞ2
ðA4Þ

Therefore, by substituting Eq. (A4) into (A3), one can get the veloc-
ity profile in subchannel a for flow pattern A, as shown in Eq. (3).

Furthermore, the boundary conditions in subchannel b of flow
pattern A are

ubðjRÞ ¼ 0 and ubðRÞ ¼ 0 ðA5Þ

Following the same derivative procedure, the velocity profile in
subchannel b for flow pattern A is thus obtained, as shown in Eq.
(4). Similarly, the velocity profiles of flow pattern B in subchannels
a and b can also be obtained by the same derivative procedure, as
shown in Eqs. (5) and (6), respectively.

Appendix B

B.1. Flow pattern A

Substituting the velocity profiles, Eqs. (3) and (4), into Eqs. (34)
and (35) gives the governing equations in flow pattern A as
follows:

g
o2waðgÞ

og2 þ owaðgÞ
og

� Bg
2j2 1� g

j

� �2
� �

iwaðgÞ ¼ 0 ðB1Þ

g
o2wbðgÞ

og2 þ owbðgÞ
og

þ
Bg 1� g2 þW2 ln g
� 	

2W1ð1� j2Þ iwbðgÞ ¼ 0 ðB2Þ

Firstly, taking Eq. (40) into Eq. (B1), one can get

X1
n¼0

anðnþ kaÞ2gnþka�1 � Bi
2j2

X1
n¼2

an�2gnþka�1

"

� 1
j2

X1
n¼4

an�4gnþka�1

#
¼ 0 ðB3Þ

or

a0k
2
ag

ka�1þa1ð1þk aÞ2gka þ a2ð2þkaÞ2�
Bi

2j2 a0

� �
gkaþ1

þ an 3þkað Þ2� Bi
2j2 a1

� �
gkaþ2þ

X1
n¼4

an nþkað Þ2� Bi
2j2 an�2

�

þ Bi
2j4 an�4

�
gnþka�1¼0

ðB4Þ
The indicial equation of Eq. (4) is

a0k
2
a ¼ 0 ðB5Þ

Because of a0 – 0, the constant ka must equal to zero, i.e. ka = 0.
Then, substituting ka = 0 into Eq. (B4) results

a1 þ 4a2 �
Bi

2j2 a0

� �
gþ 9a3 �

Bi
2j2 a1

� �
g2

þ
X1
n¼4

ann2 � Bi
2j2 an�2

�
þ Bi

2j4 an�4

�
gn�1 ¼ 0 ðB6Þ

By equating the coefficients of all g to zero, one can obtain two
results. First, all the coefficients an with odd index must be zero

a2nþ1 ¼ 0; n P 0 ðB7Þ

Second, the coefficients an with even index satisfy the recursive
relation

a2n ¼
Bi

8j2

1
n2 a2n�2 �

1
j2 a2n�4

� �
; n P 1 ðB8Þ

Moreover, the coefficient a0 is the undetermined constant and it can
be solved by the boundary conditions.

Then, taking Eq. (41) into Eq. (B2), one can get

X1
n¼0

bn nþ kbð Þ2gnþr�1 þ Bi
2W1ð1� j2Þ

X1
n¼0

bngnþkbþ1

"

�
X1
n¼0

bngnþkbþ3 þW2

X1
n¼0

bn gnþkbþ1 � ln g

 �#

¼ 0 ðB9Þ

The term lng in Eq. (B9) can be expressed in terms of Taylor series

lng ¼ ðg� 1Þ � ðg� 1Þ2

2
þ ðg� 1Þ3

3
þ � � � þ ðg� 1ÞN

N
ðB10Þ

By taking the first two terms in Eq. (B10) and substituting lng
into Eq. (B9) result

X1
n¼0

ðnþ kbÞ2bngnþkb�1 þ Bi
2W1 1� j2ð Þ

X1
n¼2

1� 3W2

2

� �
bn�2gnþkb�1

"

þ2W2

X1
n¼3

bn�3gnþkb�1 �
X1
n¼4

1þW2

2

� �
bn�4gnþkb�1

#
¼ 0

ðB11Þ

Following the same calculating procedure as presented before, one
can find that the constant kb = 0 and the coefficients bn are in the form

b1 ¼ 0; bn ¼
�Bi

2W1ð1� j2Þ
1
n2 1� 3

2
W2

� �
bn�2 þ 2W2bn�3

�

� 1þ 1
2

W2

� �
bn�4

�
; n P 2

ðB12Þ
B.2. Flow pattern B

Substituting the velocity profiles, Eqs. (5) and (6), into Eqs. (34)
and (35) gives the governing equations in flow pattern B as
follows:

g
o2waðgÞ

og2 þ owaðgÞ
og

þ Bg
2j2 1� g

j

� �2
� �

iwaðgÞ ¼ 0 ðB13Þ

g
o2wbðgÞ

og2 þ owbðgÞ
og

�
Bg 1� g2 þW2 ln g
� 	

2W1ð1� j2Þ iw bðgÞ ¼ 0 ðB14Þ

Taking Eqs. (40) and (41) into Eqs. (B13) and (B14), respectively, and
following the same calculating procedure, one can obtained the
coefficients an
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a2n ¼
�Bi
8j2

1
n2 a2n�2 �

1
j2 a2n�4

� �
; n P 1 ðB15Þ

and the coefficients bn

b1 ¼ 0; bn ¼
Bi

2W1ð1� j2Þ
1
n2 1� 3

2
W2

� �
bn�2 þ 2W2bn�3

�

� 1þ 1
2

W2

� �
bn�4

�
; n P 2 ðB16Þ

in flow pattern B.
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